Authors | Abraham Fainsod & Sally A. Moody |
ISBN | 9780367505349 |
Publisher | CRC Press |
Language | English |
Pages | 360 |
Size | 209 x 278 x 23 mm |
Images | Line drawings and tables |
Format | Paperback |
Year published | 2022 |
This book focuses on the amphibian, Xenopus, one of the most commonly used model animals in the biological sciences. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to our knowledge in cell biology, developmental biology, molecular biology, and neurobiology. In recent years, with the completion of the genome sequence of the main two species and the application of genome editing techniques, Xenopus has emerged as a powerful system to study fundamental disease mechanisms and test treatment possibilities. Xenopus has proven an essential vertebrate model system for understanding fundamental cell and developmental biological mechanisms, for applying fundamental knowledge to pathological processes, for deciphering the function of human disease genes, and for understanding genome evolution.
Key Features:
- Provides historical context of the contributions of the model system
- Includes contributions from an international team of leading scholars
- Presents topics spanning cell biology, developmental biology, genomics, and disease model
- Describes recent experimental advances
- Incorporates richly illustrated diagrams and color images
Table of Contents
Section I: Contributions to Cell, Developmental and Molecular Biology
Chapter 1: A quick history of Xenopus: The humble batrachian
John B. Wallingford
Chapter 2: The study of cell division control and DNA replication in Xenopus egg extracts
Allison M. Jevitt and Susannah Ranki
Chapter 3: Maternal gene control of embryogenesis: germ cell determination and germ layer formation
Douglas W. Houston
Chapter 4: Signaling components in dorsal-ventral patterning and the Organizer in Xenopus
Eddy M. De Robertis and Nydia Tejeda-Munoz
Chapter 5: Signaling pathways in anterior-posterior patterning
Chenbei Chang
Chapter 6: Wnt signaling in tissue differentiation and morphogenesis
Stefan Hoppler and Michael Kuhl
Chapter 7: Multiple functions of Notch signaling during early embryogenesis
Silvia L. Lopez
Chapter 8: The development and evolution of the vertebrate neural crest: insights from Xenopus
Joshua R. York and Carole LaBonne
Chapter 9: The use of Xenopus oocytes to study the biophysics and pharmacological properties of receptors and channels
Ataulfo Martinez-Torres and Elizabeth Pereida-Jaramillo
Section II: Systems Biology and the Genomic Era
Chapter 10: The continuing evolution of the Xenopus genome
Mariko Kondo and Masanori Taira
Chapter 11: Dynamics of chromatin remodeling during Xenopus development
Gert Jan C. Veenstra
Chapter 12: Gene regulatory networks controlling Xenopus embryogenesis
Ken W. Y. Cho and Ira L. Blitz
Chapter 13: Development of high-resolution proteomic analyses in Xenopus
Elizabeth Van Itallie and Leonid Peshkin
Chapter 14: Advances in genome editing tools
Marko E. Horb, Anita Abu-Daya, Marcin Wlizla, Anna Noble and Matt Guille
Section III: From Basic Biological Insights to Human Disease
Chapter 15: Formation of the left-right axis: insights from the Xenopus model
Axel Schweickert and Tim Ott
Chapter 16: Discovering the function of congenital heart disease genes
Delfina P. Gonzalez and Mustafa K. Khokha
Chapter 17: Craniofacial development and disorders: contributions of Xenopus
Ashwin Lokapally and Hazel Sive
Chapter 18: Modeling digestive and respiratory system development and disease in Xenopus
Scott A. Rankin and Aaron M. Zorn
Chapter 19: Functional neurobiology in Xenopus provides insights into health and disease
Clayton Gordy, Michael Forsthofer, Parthena Soupiadou, Suzan Ozugur and Hans Straka
Chapter 20: Leaping towards the understanding of spinal cord regeneration
Paula Slater, Gabriela Edwards-Faret and Juan Larrain
Chapter 21: Studying tumor formation and regulation in Xenopus
Dieter Tulkens and Kris Vlemnickx
Chapter 22: Xenopus: a model to study natural genetic variation and its disease implications
Avi Leibovich, Sally A. Moody, Steven L. Klein and Abraham Fainsod
Chapter 23: Using Xenopus to understand pluripotency and reprogram cells for therapeutic use
Meghana S. Oak and Eva Hörmanseder